Fundația Orange

Multiplii și submultiplii metrului

Concurs

ScoalaSig

Trimis la 14.03.2018

Interdisciplinar
MATEMATICĂ, FIZICĂ, VII MEDIU PREDARE, CONSOLIDAREA CUNOȘTINȚELOR

Materialul propune un exercițiu de verificare a transformãrilor metrului prin aplicarea ĩn cazul unei probleme de fizicã.


Conținut video


Multimedia

Multiplii si submultiplii metrului

Uploaded by NeoAnto on 2018-03-14.


Materialul video poate fi utilizat ĩntr-o lecție de recapitulare, la sfârșitul unitãții de ĩnvãțare.
Acest material atrage atenția cã multipli și submultipli metrului sunt folosiți deseori
ĩn problemele de fizicã, astfel am exemplificat o situație concretã pe care o ĩntâlnesc elevii.
Deoarece de foarte multe ori, la evaluãri, elevi buni și foarte buni greșesc sau omit aceste transformãri, considerându-le prea ușoare.
Scara transformãrilor este utilizatã atât pentru mãsurarea atomilor, a microorganismelor folosind unitãți de mãsurã (nm,pm,μm) cât și pentru mãsurarea distanțelor dintre planete, dintre stele folosind unitãți de mãsurã (Mm,Gm,Tm).
Aplicabilitatea acestei scãri de transformare fiind atât la matematica și fizicã, cât și la biologie,geografie,chimie sau informaticã.
Materialul poate fi folosit ĩn clasã, frontal sau individual de cãtre elevi cât și acasã ĩn pregãtirea temelor.


Alte informații

Realizator material: Rindunicã Antonio- Clasa a VII-a
Profesor coordonator: Palce Adriana - fizicã
Liceul Tehnologic Nr.1 Sĩg - Sĩg, Sãlaj, România


ScoalaSig, profesor de Fizică

Liceul Tehnologic Nr.1 Sĩg, România, Sĩg, Sălaj

Trimis la 14.03.2018 - 10:38


Materiale similare

Triunghiul dreptunghic

Matematică
MATEMATICĂ, VI, VII, VIII

In material sunt prezentate următoarele noțiuni:
- definiție
- teorema 30-60-90
- teorema medianei
- teorema lui Pitagora
- arie, înălțime

Media aritmetică și media geometrică cu Blockly

Matematică
MATEMATICĂ, VII, VIII

În video-ul atașat am exemplificat cum poate fi folosit Blockly pentru a calcula media aritmetică și media geometrică. De asemenea, în ultima parte, am pus în evidență inegalitatea mediilor: mg ≤ ma.